\renewcommand{\Diff}{\mathcal{D}}\newcommand{\dist}{\mathrm{dist}}\renewcommand{\Imm}{\mathcal{I}}\newcommand{\Shape}{\mathcal{S}}\newcommand{\R}{\mathbb{R}}\newcommand{\vol}{\operatorname{vol}}\newcommand{\Vol}{\mathrm{Vol}}\newcommand{\Var}{V}

Numerical Frameworks for Elastic Shape Analysis
using Second Order Sobolev Metrics


Emmanuel Hartman^1, Yashil Sukurdeep^2, Emery Pierson^3,
Eric Klassen^1, Mohamed Daoudi^{4,5}, Martin Bauer^1, Nicolas Charon^4

^1Department of Mathematics, Florida State University
^2Center of Imaging Sciences, Johns Hopkins University
^3LIX, Ecole Polytechnique
^4Univ. Lille, CNRS, Centrale Lille, Institut Mines-Télécom, CRIStAL
^5IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems
^6Department of Mathematics, University of Houston


AMS Joint Mathematics Meeting
6 January 2024

Numerical Frameworks for Elastic Shape Analysis using Second Order Sobolev Metrics Emmanuel Hartman^1, Yashil Sukurdeep^2, Emery Pierson^3, Eric Klassen^1, Mohamed Daoudi^{4,5}, Martin Bauer^1, Nicolas Charon^4 ^1Department of Mathematics, Florida State University ^2Center of Imaging Sciences, Johns Hopkins University ^3LIX, Ecole Polytechnique ^4Univ. Lille, CNRS, Centrale Lille, Institut Mines-Télécom, CRIStAL ^5IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems ^6Department of Mathematics, University of Houston AMS Joint Mathematics Meeting 6 January 2024