Consider $\mu,\nu\in\mathcal{M}(N)$. The Wasserstein-Fisher-Rao distance from $\mu$ to $\nu$ may be formulated as
\[\qquad\qquad\operatorname{WFR}(\mu,\nu)^2:= \inf\limits_{\gamma\in \mathcal{M}(N\times N)}\left(\int-\log(\overline{\cos}(d_N(x,y)))d\gamma(x,y) +\operatorname{KL}(\operatorname{Proj}_1 \gamma, \mu)+\operatorname{KL}(\operatorname{Proj}_2 \gamma, \nu) \right). \]
where $\operatorname{KL}$ is the Kullback-Leibler divergence and $\overline{\cos}(\theta)=\cos(\min(\theta,\pi/2))$.
This formulation allows adaptation of the Sinkhorn-Knopf algorithm to solve an entropy regularized version of the problem given as
\[\inf\limits_{\gamma\in \mathcal{M}(N\times N)}\left(\int-\log(\overline{\cos}(d_N(x,y)/2))d\gamma(x,y) +\operatorname{KL}(\operatorname{Proj}_1 \gamma, \mu)+\operatorname{KL}(\operatorname{Proj}_2 \gamma, \nu) \right) + \lambda H(G). \]
[2] Chizat et. al. "Scaling algorithms for unbalanced optimal transport problems"